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Summary

Extensive slow-crack-growth (SCG) analysis was made using a primary exponential crack-velocity
formulation under three widely used load configurations: constant stress rate, constant stress, and cyclic
stress. Although the use of the exponential formulation in determining SCG parameters of a material
requires somewhat inconvenient numerical procedures, the resulting solutions presented gave almost
the same degree of simplicity in both data analysis and experiments as did the power-law formulation.
However, the fact that the inert strength of a material should be known in advance to determine the
corresponding SCG parameters was a major drawback of the exponential formulation as compared with
the power-law formulation.

Introduction

Advanced ceramics are candidate materials for structural applications in advanced heat engines and
heat recovery systems. The major limitation of these materials in hostile environments, particularly at
elevated temperatures, is slow-crack-growth (SCG)-associated failure, where slow crack growth of
inherent defects or flaws can occur until a critical size for catastrophic failure is reached. To ensure
accurate life prediction of ceramic components, it is important to accurately evaluate the SCG parameters
of a material with specified loading and environmental conditions.

 Life prediction (or SCG) parameters of a material depend on what type of crack-velocity formulation
is used to determine them. The power-law crack-velocity formulation has been used for several decades
to describe SCG behavior of a variety of brittle materials ranging from glass and glass ceramics to
advanced structural ceramics. The main advantage of the power-law formulation over other crack-
velocity formulations lies in the simplicity in its mathematical expression for lifetime analysis. It has
also been observed that the power-law formulation has described adequately the SCG behavior of many
brittle materials. Because of these merits, the power-law formulation has been used in two recent ASTM
test standards (refs. 1 and 2) to determine SCG parameters of advanced ceramics in constant stress rate
testing at both ambient and elevated temperatures. Alternative crack-velocity formulations take exponen-
tial forms to account for the influence of other phenomena (such as a corrosion reaction, diffusion control,
thermal activation, etc.). However, these exponential forms generally do not result in simple mathematical
expressions of life prediction formulation, although the forms might better represent the actual SCG
behavior of some materials. Because of this mathematical inconvenience, the exponential crack-velocity
formulation has rarely been used for brittle materials as a means of life prediction methodology in testing
or analysis.
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In this report, the exponential crack-velocity formulation was analyzed to achieve a more convenient
and simplified life prediction analysis compared with the previous exponential crack-velocity-based
analyses. The numerical analysis presented here was made for three widely utilized load configurations:
constant stress rate (dynamic fatigue), constant stress (static fatigue or stress rupture), and cyclic stress
(cyclic fatigue). The resulting analysis obtained with the exponential formulation was compared with that
of the power-law formulation to assess which would yield a better life prediction methodology in terms
of accuracy and convenience in testing and analysis. To the authors’ best knowledge, no analytical study
on slow crack growth has been done previously using the exponential formulation under cyclic loading.
In the following reports (parts 2 and 3 of this series) the merits and limitations of the exponential formula-
tion will be further described in detail using a variety of SCG data determined for many glasses and
advanced ceramics at both ambient and elevated temperatures.

All symbols used in this report are listed in the appendix.
This work was sponsored in part by the HOT/PC and the ZCET projects at the NASA Glenn Research

Center, Cleveland, Ohio.

Theoretical Background

Power-Law Formulation

 The widely utilized empirical power-law crack-velocity term for above the fatigue limit is expressed
in the form (ref. 3)
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where

v crack velocity
a crack size
t time
KI mode I stress intensity factor
KIC mode I critical stress intensity factor (or fracture toughness)
A, n material- and environment-dependent SCG parameters

Typically, SCG testing to determine related SCG parameters is performed by applying constant stress
rate, constant stress, or cyclic stress loading to ground-test specimens. Constant stress rate testing deter-
mines strength as a function of applied stress rate, whereas constant stress and cyclic stress testing mea-
sure time to failure as a function of applied stress. The strength in constant stress rate and the time to
failure in constant stress and cyclic stress tests can be analytically derived to give the following relations
(refs. 4 and 5):

σ σf d
nD= +˙ /( )1 1 (2)

t Dfs s
n= ( )−σ 3
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t Dfc c
n= ( )−σmax 4

where  σf   is the fracture stress corresponding to the applied stress rate  σ̇   in constant stress rate testing,
tfs  is the time to failure subjected to a constant applied stress σ in constant stress testing, and  tfc  is the
time to failure subjected to cyclic loading with a maximum stress  σmax  in cyclic stress testing. The pa-
rameters represented by  D’s  are expressed as follows (refs. 4 and 5):
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where B = 2KIC /[AY2(n – 2)] where  Y  is the crack geometry factor in the relation KI = Yσ a1/2; Si  is the
inert strength at which no slow crack growth occurs; the function  f(t)  is a periodic function in cyclic
loading specified in σ(t) = σmax f(t) in a range of 0 ≤ f(t) ≤ 1; and  τ  is the period. The SCG parameters  n
and  D  (and  B  or  A) can be obtained by a linear regression analysis with experimental data in conjunc-
tion with the corresponding equation, either (2), (3), or (4), depending on the type of loading.  Hence, it is
straightforward to determine SCG parameters  n  and  D  by least-squares fitting of the data, which is the
most advantageous feature of the power-law crack-velocity formulation. This convenience and merit in
mathematical simplicity in addition to the use of routine test techniques have led for several decades to
the almost exclusive use of the power-law crack-velocity formulation in life prediction analysis and test-
ing for many brittle materials over a wide range of temperatures.

Exponential Formulation

Fracture-mechanics-based modeling typically offers a framework in which lifing can be made.
However, long-term life prediction is sensitive to the relation between the slow crack velocity and the
stress intensity factor, which depends on many factors itself. As a result, several different exponential
crack-velocity formulations that have been previously proposed are based on these other factors, which
include the presence of a chemically assisted corrosion reaction (ref. 6), diffusion-controlled stress
rupture (ref. 7), a thermally activated process (ref. 8), a chemical reaction with constant crack-tip
configuration (ref. 9), kinetic crack growth (ref. 10), and others (ref. 11). The generalized exponential
crack-velocity forms thus proposed are
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where  A  and  n  are SCG parameters and are different from those used in the power-law formulation.
Unlike the power-law crack-velocity formulation, the exponential crack-velocity forms do not yield
simple, analytical expressions of either the resulting strength as a function of applied stress rate in con-
stant stress rate testing or of the resulting time to failure as a function of applied stress in constant stress
testing or maximum applied stress in cyclic stress testing. Several attempts have been made under both
constant stress rate and constant stress loading to obtain corresponding lifetime expressions through nu-
merical integration incorporating linear (refs. 12 and 13) or nonlinear (ref. 14) regression analysis.
However, this approach still involves complexity in regression technique as compared with the simple
least-squares approach in the power-law formulation.

 Slow-crack-growth analyses of three load configurations of constant stress rate, constant stress, and
cyclic stress were made in this section to obtain simpler, representative equations through numerical
solution, which in turn makes the use of regression analysis easier to determine corresponding SCG
parameters comparable to the case of the power-law formulation. Trantina (ref. 12) used the exponential
crack-velocity forms (eqs. (8) to (10)) to determine the approximate time-to-failure equations under con-
stant stress rate and constant stress loading and showed that the coefficients of the exponential equations
(8) to (10) were insignificant except at very low fracture stress. Ritter et al. (ref. 13) used the exponential
form (eq. (8)) to determine the relation of strength versus stress rate in constant stress rate loading via a
numerical method for indentation cracks that possess a residual stress field around the indent. For the pur-
pose of simplicity and generalization, equation (8) was chosen for the present analysis. This equation was
taken from Wiederhorn and Bolz (ref. 9), who modified the original Hillig and Charles (ref. 6) exponen-
tial formulation. An additional analysis using other crack-velocity forms (eqs. (9) to (11)) was also made
and the results will be discussed in the section Other Exponential Formulations.

To minimize the number of parameters to be specified (such as  A,  a,  σ,  Si,  KIC, and  t), it is con-
venient to use a normalized scheme, as used previously for the power-law velocity formulation (refs. 15
to 17):
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where

K* stress intensity factor (SIF)
T* time
C* crack size



 5NASA/TM—2002-211153/PART1

σ* applied stress

˙ *σ applied stress rate

σmax
* maximum applied stress

in cyclic loading, and  ai  is the critical crack size in the inert condition or is the initial crack size. Using
these variables, the exponential crack-velocity equation (8) can be normalized as follows:
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The corresponding normalized SIF  K*  is expressed in load configurations of constant stress rate, con-
stant stress, and cyclic sinusoidal stress, respectively, as
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where  R  is the stress (or load) ratio, defined as R = σmin/σmax, in which σmin  and  σmax  are the mini-
mum and maximum applied stresses, respectively, applied in cyclic loading; and  ω  is the angular
velocity. As typical for ceramics, the crack size at instability in either an inert or fatigue environment
was assumed to be small compared with the body of the specimens or components (i.e., an infinite-body
assumption). Differential equation (14) was solved numerically using a fourth-order Runge-Kutta method
for each respective loading configuration. The initial condition was C* = 1.0 at T* = 0, and the instability
conditions were K* = 1.0 and dK*/dC* > 0. In cyclic loading, the frequency was taken as arbitrary values
of ωai /A ≥ 108, depending on the values of maximum applied stress and  n. The effect of frequency on
the solution is discussed in the section Cyclic Stress Loading.

Results of Numerical Analysis

 Constant Stress Rate Loading

The results of the numerical solution of normalized fracture stress (strength)  σ f
*    as a function of

normalized stress rate  ˙ *σ   are shown in figure 1 for values of  n  ranging from 5 to 100. As seen in the
figure, for a given  n, strength decreases with decreasing stress rate and represents the susceptibility to
slow crack growth. The rate of decrease in strength with decreasing stress rate becomes more significant
with lower  n  values, analogous to the case for the power-law formulation, indicating that the lower  n
gives rise to the greater SCG susceptibility and vice versa. The strength approaches its corresponding
inert strength as stress rate increases to a certain value at which no slow crack growth occurs. Likewise,
the strength converges close to zero as the stress rate approaches ln ˙ *σ  = 0. A linear relationship between
σ f

*     and  ln ˙ *σ   holds for most of  n  values within the range of  σ f
*   = 0.2 to 0.9 with correlation

coefficients of r2 ≥ 0.9975.
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Figure 1.—Numerical results of normalized strength �f* as a function of normalized stress 
   rate �* in constant stress rate loading for different values of SCG parameter n.
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Figure 2.—Relationship between true SCG parameter 
   n and apparent SCG parameter n' in constant stress 
   rate loading.

Best fit
1:1 relation

n' = 0.9775n + 1.7384

–0.2
0 20 40 60 80 100 120

–0.1

0.0

0.1

0.2

0.3

0.4

0.5

True SCG parameter, n

In
te

rc
ep

t,
 �

Figure 3.—Relationship between intercept � and true 
   SCG parameter n in constant stress rate loading.

Best fit

� = 2.666n–1.279



 7NASA/TM—2002-211153/PART1

 A linear regression analysis of  σ f
*    and ln ˙ *σ  in the range of  σ f

*   = 0.2 to 0.9 was made to
determine the slope and intercept of each individual curve for a given  n, based on the following relation:

σ σ βf n
* *ln ˙=

′
+ ( )1

18

where 1/n' and  β  are the slope and intercept, respectively. A comparison of the true  n  (an input datum)
and the apparent  n'  (calculated) is shown in figure 2, where a linear relationship between  n  and  n'  is
evident (except for lower  n  values, particularly for n < 10). Hence, the overall relationship between  n
and  n'  can be approximated as

′ = + ( )n n0 9775 1 7384 19. .

with a correlation coefficient r2 = 0.9995. Since the difference between  n'  and  n  was ≥8 percent for n ≤ 10
and ≤3 percent for n ≥ 20, a further approximation of equation (19) can be made for n ≥ 20 as follows:

′ ≈ ( )n n 20

The relationship between the intercept  β and  n  is shown in figure 3. The value of  β  decreases with
increasing  n  and becomes insignificant, approaching zero, when n > 20. The overall relationship
between  β  and  n  in the range of  n = 5 to 100 was

β = ( ) ( )−2 666 211. .279n

with a correlation coefficient r2 = 0.9973. For a nonnormalized expression, equation (13) is used to
reduce equation (18) to

σ
σ χf

iS n
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22ln ˙
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SCG parameters  n'  and  χ  in constant stress rate loading can be obtained from the slope and inter-
cept by a linear regression analysis of (σf /Si) versus ln σ̇ . With  n'  thus calculated, n  can be evaluated
from equation (19). The parameter  A  can be evaluated using equation (23) from calculated  χ  together
with  β  (eq. (21)) and known values of ai and Si. The solution presented in this study (eq. (22)) is much
simpler compared with the previous solution by Trantina (ref. 12) in which a simple linear regression
would  hardly be applicable because of the complex functional form of the solution, as shown below
(note that σf is present in both sides of the equation):

σ
σ σf

i

i
fS n n
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A
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24ln ˙ ln
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Therefore, when determining SCG parameters, the current solution (eq. (22)) significantly eliminates the
complexity associated with a regression analysis that would be encountered in the previous solution (eq.
(24)). For the case of n > 20, based on the results of figures 1 and 3 for σ f

*   ≥ 0.4,  β  is negligible (with a
maximum of about 7 percent) compared with σ f

* . Hence, equation (21) reduces to

β ≈ ( )0 25

which results in χ ≈ [ln (ai/ASi)]/n. Likewise, in this case, n' ≈ n from equation (20).
A distinct difference in functional expression between the power-law and exponential formulations

is that in the power-law formulation, log σf is plotted as a function of log σ̇ , whereas in the exponential
formulation, σf /Si is plotted as a function of ln σ̇  (fig. 1 shows this for the normalized parameters, σ f

*   as
a function of ln ˙ *σ ). Hence, the knowledge of inert strength in the exponential formulation is a prerequi-
site to determining SCG parameters  n'   and  χ, which is a disadvantage compared with the case (eq. (2))
of the power-law formulation. Note that the power-law formulation does not require any prior knowledge
of inert strength to determine SCG parameters  n  and  D. Although not presented here, the numerical re-
sult was plotted as log σf as a function of log σ̇  for different  n  values in the same way that is used for
the power-law formulation. The resulting plots, however, showed appreciable nonlinearity, which made
linear least-squares fitting inapplicable in determining the related SCG parameters.

Constant Stress Loading

The numerical results of normalized time to failure Tf
*  as a function of normalized applied stress

σ*  are shown in figure 4 for values of  n  ranging from 5 to 100. The general trend of the solution can
be summarized in terms of (1) the convergence of ln Tf

*  close to zero with σ*� 0, (2) the increased SCG
susceptibility with decreasing  n  values, and (3) the linearity between ln Tf

*  and  σ*  in the range of
σ* = 0.2 to 0.9. As a consequence, the relationship between normalized time to failure and normalized
applied stress within the linear region can be written as

ln * *T nf = − ′ + ( )σ β 26

The linearity between ln Tf
*  and  σ*  is manifest when the correlation coefficient r2 ≥ 0.995 for each

curve is considered. Hence, n'  and  β  can be determined with a reasonable accuracy by a linear regres-
sion analysis based on the results in equation (26). The relationship between  n'  and  n  is shown in figure
5 and has the following relation:

′ = + ( )n n0 9827 3 3440 27. .

with r2 = 0.9997. The difference between  n'  and  n  was ≥8 percent for n ≤ 30 and ≤5 percent for n ≥ 40
so that a further approximation of equation (27) can be made for the case of n ≥ 40 as

′ ≈ ( )n n 28

The function of  β  with respect to  n  is depicted in figure 6, where the intercept  β  decreases with
increasing  n  values, resulting in the best-fit relation
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Figure 4.—Numerical results of normalized time to failure Tf* as function of normalized 
   applied stress �* in constant stress loading for different values of SCG parameter n.
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β = − + ( )−1 913 4 985 290 049. . .e n

with r2 = 0.9907.
      For the nonnormalized expression, equation (13) is used to reduce equation (26) to

ln t n
Sf

i
= − ′ + ( )σ χ 30

where

χ β= 



 + ( )ln

a

A
i 31

Hence, n'  and  χ  in constant stress loading can be obtained from the slope and intercept, respectively, by
a simple linear regression analysis of the data ln tf as a function of  σ/Si. With  n'  calculated,  n  can be
evaluated from equation (27). The parameter  A  can be estimated from equation (31) with calculated  χ
together with  β  (eq. (29)) and known values of  ai. The solution presented here is much simpler than the
rather complex one proposed by Trantina (ref. 12), in which the slope of the relation ln tf  versus σ/Si was
n + (Si/σ). Both analyses, however, would give a similar result when  n  is significantly greater than Si/σ.

A notable difference in constant stress loading analysis between the power-law and exponential for-
mulations is that in the power-law formulation, log tf is plotted as a function of log σ as seen in equation
(3). However, in the exponential formulation, ln tf is plotted as a function of σ/Si . Hence, as in the case
of constant stress rate loading, inert strength must be known to determine  n'  and  χ, which is a distinctive
drawback of the exponential formulation as compared with the power-law formulation.  Unlike the
power-law formulation (eq. (3)), there was significant nonlinearity in plots of log Tf

*  as a function of
log σ* (not shown here), which made linear least-squares fitting inapplicable to determine the related
SCG parameters.

Cyclic Stress Loading

The results of the numerical solution of normalized time to failure  Tf
*   as a function of normalized

maximum applied stress  σmax
*   in cyclic sinusoidal loading with two stress ratios  R  of 0.1 and 0.5 are

shown in figure 7 for values of  n  ranging from 5 to 80. Similar to the case of constant stress loading,
this plot is linear with respect to  σmax

*   in the range 0.2 to 0.9 and converges close to zero with a further
decrease in  σmax

* . The linearity between ln Tf
*  and  σmax

*   was evident considering the correlation coef-
ficient of r2 ≥ 0.997. Also, note that the effect of the R-ratio on the solution for a given  n  value is insig-
nificant. Based on the results in figure 7, similar to the case of constant stress loading, the relationship
between ln Tf

*  and  σmax
*   can be described as follows:

ln *
max
*T nf = − ′ + ( )σ β 32

where  n'  is the slope and  β  is the intercept, which can be determined from the numerical results using a
linear regression analysis based on equation (32).

 Figure 8 shows the relationship between  n'  and  n  for R-ratios of 0.1 and 0.5. For comparison, the
result determined in constant stress loading (i.e., R = 1.0) from figure 5 was also included. Note that the
SCG analysis in cyclic stress loading reduces to that of constant stress loading when R = 1.0 (also seen in
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eq. (17)); hence, constant stress loading can be regarded as one of the generalized cyclic loading configu-
rations. A good linear relation between  n'  and  n  was found for both R = 0.1 and 0.5 with r2 > 0.999:

′ = + =
′ = + = ( )

n n R

n n R

0 9777 2 5296 0 1

0 9772 2 5411 0 5 33

. . for .

. . for .

As seen in figure 8, no significant difference in the n'-n relation exists for R-ratios ranging from 0.1 to 1.0
(constant stress loading):  this relationship is also observed in the power-law formulation (refs. 5, 17, and
18). The difference between  n'  and  n  was ≥7 percent for n ≤ 20 and ≤3 percent for n ≥ 40, so that a fur-
ther approximation of equation (33) can be made for R = 0.1 and 0.5 for the case of n ≥ 40 as follows:

′ ≈ ( )n n 34

The relationship between the intercept  β  and  n  is depicted in figure 9, where the result from figure 6
for constant stress loading (R = 1.0) was also included for comparison. The intercepts for R = 0.1 and 0.5
decrease more monotonically with increasing  n  values than that of R = 1.0. The best-fit equation, similar
to equation (29) in constant stress loading, was obtained for each R-ratio:

β
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 For the nonnormalized expression, equation (13) can be used to reduce equation (32) to

ln maxt n
Sf

i
= − ′ + ( )σ

χ 36

where

χ β= 



 + ( )ln

a

A
i 37

Therefore, n'  and  χ  of the exponential formulation in cyclic stress loading for a given R-ratio can be
obtained from the slope and intercept by a linear regression analysis of the data of ln tf as a function of
σmax /Si. With  n'  calculated, n  can be evaluated from equation (33). The SCG parameter  A  can be
estimated from equation (37) with calculated  χ, β  (eq. (35)), and known values of  ai.

In cyclic stress loading, a distinct difference between the power-law and exponential formulations is
that in the power-law formulation, log tf is plotted as a function of log  σmax as seen in equation (4)
whereas in the exponential formulation, ln tf is plotted as a function of σmax/Si. Hence, as in the cases of
constant stress rate and constant stress loading, the inert strength of a material must be known in advance
for cyclic loading to determine the corresponding SCG parameters, a clear disadvantage of the exponen-
tial formulation compared with the power-law formulation. Although not presented here, it was found that
in plots of log Tf

*  as a function of log σmax
* , typical of the power-law formulation (eq. (4)), there was a

considerable nonlinearity that made linear least-squares fitting inapplicable in determining the related
SCG parameters.

Typical examples of the effect of frequency on the time to failure in cyclic stress loading are shown
in figure 10 for R-ratios of 0.1 and 0.5 with n = 20 and σmax

*  = 0.9. The number of cycles to failure  Nf  is
calculated using the relation

N
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where ωai/A is the input value for numerical procedures, as shown in equation (17).  As seen from
figure 10, Tf

*  decreases rapidly around Nf = 10–1 to 100 and thereafter approaches a plateau that corre-
sponds to the exact solution of time to failure. In other words, as long as the total number of cycles to
failure is ≥1, the solution of time to failure is converged and is thus independent of either the number
of cycles or frequency. Hence in the numerical procedure, the value of ωai/A was chosen to fulfill this
requirement and started with a minimum value of 108, depending on  Tf

* . This frequency independency
in the exponential formulation is the same as that in the power-law formulation (refs. 5 and 17). For the
power-law formulation, the time to failure remains unchanged with frequency, which is attributed to the

functional form of  1

0

/ τ
τ

( ) ( )[ ]∫ f t t
n
d   in equation (7) (ref. 5). It can be easily shown that the period  τ  of

any applied loading cycle is always cancelled out in the formulation. It should be noted that in this analy-
sis, the presence of another damage mechanism (refs. 19 to 21) in addition to slow crack growth was not
assumed to occur in cyclic loading. Only slow crack growth was considered as the unique mechanism
leading to the failure of a material.

Comparison of Constant Stress and Cyclic Stress Loading Lifetimes: the h-Ratio

The ratio of constant stress and cyclic stress loading lifetimes, the h-ratio, with a condition of  σ*  in
constant stress loading equal to  σmax

*   in cyclic stress loading (σ* = σmax
* ), has been frequently used in

the power-law formulation (refs. 5, 17, and 18) to quickly compare lifetimes of constant stress and cyclic
stress loading. As done customarily for the power-law formulation, the h-ratio was also calculated for the
exponential formulation. The h-ratio is defined as (refs. 5, 17, and 18)

h
t

t
fs

fc
= ( )39

10–10

10–9

10–8

10–7

10–6

10–5

10–4

10–3

–6 –3 0 3 6 9

N
o

rm
al

iz
ed

 t
im

e 
to

 f
ai

lu
re

, T
f*

Number of cycles to failure, log Nf

Figure 10.—Normalized time to failure Tf* as function 
   of number of cycles to failure Nf in cyclic (sinu-
   soidal) stress loading for R-ratios of 0.1 and 0.5 
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where again  tfs  and  tfc  are times to failure in constant stress and cyclic stress loading, respectively.
Based on the numerical results of time to failure for constant stress and cyclic stress loading, the h-ratio
was calculated using equation (39), and the results are presented in figure 11 as a function of  n  for differ-
ent values of the R-ratio. The h-ratio decreases with increasing  n, and the rate of decrease with increas-
ing  n  is almost the same regardless of R-ratio up to 0.9. Also, for a given  n, the h-ratio increases with
increasing R-ratio. Note that the R-ratio of 1.0 represents the case for constant stress loading so that when
R = 1.0, the numerical solution in cyclic stress loading should reduce to the case of constant stress load-
ing. This presents another way to check the accuracy of the cyclic stress loading analysis. The h-ratio var-
ies slightly by a factor of 2 between σmax

*  = 0.2 and 0.9: the lower  σmax
*   value gives the higher h-ratio

and vice versa. Hence, for a conservative estimate, the higher value of σmax
*  = 0.7 was used for the calcu-

lation of the h-ratio. The maximum difference in life between cyclic stress and constant stress loading is
approximately 1 order of magnitude, which occurs for R = 0.1 and n ≥ 80. A similar trend in the h-ratio
can also be observed in the power-law formulation, as shown in figure 12. Here the plots of the h-ratio
as a function of  n  are shown for a range of R = 0.0 to 1.0, calculated previously for the power-law
formulation (ref. 17). Unlike the exponential formulation, no effect of  σmax

*   on the h-ratio for a given
R-ratio had been observed for the power-law formulation. Although no significant difference exists in
the plots of h-ratio versus  n  between the exponential (fig. 11) and power-law (fig. 12) formulations,
the overall magnitude of the h-ratio is about 20 percent greater in the exponential than in the power-law
formulation.

Other Exponential Formulations

 A comparison of solutions from other exponential SCG formulations under three loading configura-
tions is shown in figure 13. The figure presents the results of three exponential formulations of equations
(9) to (11) for n = 20 and 40 and compares them with those of the primary formulation of equation (8).
The difference in solution between this primary equation and two other equations ((9) and (10)) was
insignificant, particularly at higher stress rates (in constant stress rate loading, fig. 13(a)) and higher
applied stresses (in constant stress and cyclic stress loading, figs. 13(b) and (c)), giving rise to a reason-
able linearity between the dependent/independent variables related. This insignificant difference in solu-
tion as well as the linearity allows one to conclude that the primary equation would be representative of
all three exponential SCG formulations considered. By contrast, the remaining second-order formulation
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(eq. (11)) showed an appreciable deviation and a notable nonlinearity. Therefore, the determination of
corresponding SCG parameters in this case differs from that of the primary equation and should only
be attempted under appropriate circumstances so that a simple linear regression could be applied with
reasonable accuracy. It is expected that considering its functional form, equation (12) also would yield
results similar to those of equation (11).

Although the use of the exponential formulations to determine the SCG parameters of a material
requires somewhat inconvenient numerical procedures, the resulting solutions given in this report would
have almost the same degree of simplicity in both data analysis and experiments as the power-law
formulation in constant stress rate, constant stress, or cyclic stress loading configurations. However,
the knowledge of inert strength of a material should be known beforehand so that the corresponding SCG
parameters (particularly n) can be determined, which could be a major drawback of the exponential for-
mulation. In parts 2 and 3 of this report series, a variety of experimental data from various glasses and
advanced ceramics at both ambient and elevated temperatures will be used to verify the solutions given
herein.

Conclusions

Based on the numerical solutions of life prediction parameters obtained with exponential formula-
tions, the following conclusions were made:

1. In constant stress rate (dynamic fatigue) loading, slow-crack-growth (SCG) parameters can be
determined by a linear regression analysis of the data of (fracture stress/inert strength) as a function of
applied stress rate, σf /Si versus ln σ̇ , together with the appropriate relations provided.

2. In constant stress (static fatigue or stress rupture) and cyclic stress (cyclic fatigue) loading, the
corresponding SCG parameters can be evaluated by a linear regression analysis of the data of time to fail-
ure as a function of (maximum applied stress/inert strength), ln tf  versus σmax/Si, in conjunction with the
pertinent relations provided.

3. No frequency effect on life and no dependency of SCG parameter  n  on the R-ratio, the ratio of
minimum to maximum applied stress, was observed in cyclic stress loading, much the same as that
observed for the power-law formulation. The difference in the ratio of constant stress to cyclic stress load-
ing lifetimes, the h-ratio, between the exponential and power-law formulations was minimal with a maxi-
mum difference of about 20 percent.

4. While the numerical solutions using the exponential formulation require somewhat inconvenient
numerical procedures, they provide almost the same level of simplicity in both data analysis and experi-
ments as the power-law formulation. However, requiring the knowledge of the inert strength of a material
to determine corresponding SCG parameters (particularly  n) would make the exponential formulation
more difficult to use in comparison with the power-law formulation.

5. There is no appreciable difference in solutions between the primary exponential SCG equation
(used in this analysis) and two other exponential expressions analyzed in this study, so the primary equa-
tion would be considered representative of all the first-order exponential formulations.
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Appendix—Symbols

A slow-crack-growth parameter defined in equations (1) and (8)

a crack size

B slow-crack-growth parameter, B = 2KIC / [AY 2(n – 2)]

C crack size in normalized scheme of references 15 to 17

D slow-crack-growth parameter defined in equations (5) to (7)

f(t) periodic function, cyclic loading

h ratio of constant to cyclic stress loading lifetimes

K stress intensity factor

N number of cycles

n slow-crack-growth parameter defined in equations (1) and (8)

R stress ratio

r2 correlation coefficient

S strength

T time in normalized scheme of references 15 to 17

t time

v crack velocity

Y crack geometry factor

β intercept of curve in linear regression analysis defined in equations (18), (26), and (32)

χ slow-crack-growth parameter defined in equations (23), (31), and (37)

σ applied stress

σ̇ applied stress rate

τ period

ω angular velocity
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Subscripts:

C critical

c cyclic stress

d constant stress rate

f fracture

I mode I

i inert or initial condition

max maximum

min minimum

s constant stress

Superscripts:

* normalized

' apparent (calculated)
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